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Abstract

To establish launch vehicle loads during atmospheric flight, the statistical characteristics of the
turbulence/gust-induced loads need to be determined. Recently, a Monte Carlo analysis procedure
was developed that uses measured turbulence/gusts to establish launch vehicle loads. This paper
presents the procedures developed to characterize the distribution of the data and to calculate
tolerance bounds on these Monte Carlo loads.
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1. Introduction

Gust loads analyses are performed to establish launch vehicle and space vehicle loads due to
turbulence encountered during atmospheric flight."* Historically, launch vehicle loads have been
calculated by applying a synthetic gust Proﬁle whose amplitude, wavelength, and shape were selected
to induce loads of a desired magnitude.” In Ref. 3, a new Monte Carlo analysis approach that uses the
turbulent component of measured wind profiles is presented. The approach requires statistical
analysis of extensive loads analysis results. This paper presents the statistical analyses performed to
establish a suitable distribution for gust loads, so that tolerance bounds on these loads could be
calculated.

The objective of this work was to characterize the statistical distribution of the gust loads data in Ref.
3, and to determine the 99.7 percent load enclosure. The 99.7 percent load enclosure is the “3-
sigma” load enclosure for data having a normal, or Gaussian, distribution; i.e., 99.7 percent of
normal data lies within three standard deviations of the mean of the distribution. For data with
statistical distributions other than normal, however, “3-sigma” is not synonymous with 99.7 percent
coverage, and the 99.7 percent enclosure may be significantly different from the three-sigma
enclosure. Because of the uncertainty in the parameters of the statistical distribution, the 99.7 percent
enclosure is presented as a 90 percent upper confidence bound on the 99.7 percent enclosure. In
statistical terminology, a 0.997/0.90 upper tolerance bound for the data is determined. Two tolerance
bound procedures are described: one that assumes a gamma distribution for the gust loads and is
most suitable for small sample sizes, and another that makes no distributional assumptions, but is
useful only if the sample size is sufficiently large.






2. Background

The application and theory of statistical tolerance bounds, where the denvatlon of tolerance bounds
for normal distributions, as well as for certain other distributions, is discussed.”® Tolerance bounds
are derived for the generalized gamma distribution, a class of statlst1cal distributions that includes the
exponential, two-parameter gamma, and Weibull distributions.® The procedure presented in Ref. 6,
however, requires that some parameters of the distribution be known in order to calculate a tolerance
bound. This procedure is not applicable to this work, since all parameters of the gust-induced loads
distribution need to be estimated from the data.
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3. Characterization of Gust-Induced Loads

Gusts, which for the purposes of this dlscuss1on are defined as the non-persistent, relatively short
wavelength components of the winds’ that a launch vehicle will encounter durmg8 flight through the
atmosphere, induce loads that have been approximated by a gamma distribution.’

The distribution of a typical set of gust loads in Ref. 3, is shown in Fig. 1. The asymmetry of the data
suggests that modeling the data with the normal distribution, and calculating the load enclosure using
three-sigma limits could significantly underpredict the true 99.7 percent enclosure.

Distribution of Gust-Induced Load
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Figure 1. Typical distribution of gust-induced load for a heavy lift launch vehicle.?
This histogram has the long right tail typical of a gamma distribution.

Probability plots are a useful tool for assessing the distribution of data. A probability plot compares
the observed data to what would be expected if the data had a particular distribution. If data have a
normal distribution, the data will tend to lie on a straight line on a normal probability plot.
Probability plots for other distributions can likewise be constructed, and data with a given statistical
distribution will tend to lie on a straight line on the corresponding probability plot.

Normal and gamma probability plots for a typical set of gust load data in Ref. 3, are shown in Figs. 2
and 3. In order to create the gamma probability plot, an estimate of the shape parameter of the
gamma distribution was necessary; the maximum likelihood estimate of the parameter was used in
this plot. Superimposed on each plot is a least-squares, best-fit straight line. These plots indicate that
modeling the gust-induced load with a normal distribution is inappropriate, and a gamma distribution
models these loads fairly well.
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Gaussian Probability Plot
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Figure 2. Heavy lift launch vehicle gust-induced loads® normal probability plot.
Nonlinearity of data demonstrates the inappropriateness of modeling
these gust-induced loads using a normal distribution.

Gamma Probability Plot
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Figure 3. Gamma probability plot for the data shown in Fig. 2. A straight
line fits the data well, suggesting that a gamma distribution is an
appropriate model for these gust-induced loads.

12




4. Determining the 0.997 Load Enclosure

If the statistical distribution of the gust loads and the parameters of that distribution were known, it is
straightforward to find a 0.997 load enclosure by integration. For normal data, a standard normal
probability table can be used, with the result that 99.7 percent of the data lies within three standard

deviations of the mean. For a general probability density, f, the 0.997 load enclosure is the value of
E satisfying

[ f,()dx=0997.

If the true distribution is unknown (although the form of the distribution may be known, the
parameters may not be), uncertainty in the load enclosure is introduced, and the 0.997 load enclosure
can only be estimated. It is possible to place an upper confidence bound on this estimate, resulting in
a one-sided tolerance bound on the load enclosure. In this work, the goal is to find a 0.997/0.90
tolerance bound; i.e., a 90-percent upper confidence bound on the 0.997 load enclosure.

For normal data, a p/C (e.g., 0.997/0.90) tolerance bound is of the form X + ks, where X is the
sample mean, s is the sample standard deviation, and & is based on the non-central t distribution:

k= zn—l,w/;:p.l—C ,
N
where n is the sample size, «/Ezp is the noncentrality parameter of the distribution, and Z, is the

standard normal p-quantile (e.g., Z,4,; =1.96). Tables for values of k are tabulated in Ref. 5, or can
be readily computed.

Tolerance bounds for data other than normal data can be more difficult to determine. For gamma
data, two procedures are described. The first method, utilizing a bootstrap statistical procedure, is
useful for sample sizes under 1000 or so. The second procedure, useful for sample sizes greater than
about 1000, is based on a normal transformation of the data.

13
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5. The Bootstrap Procedure

The bootstrapping procedure is a resampling procedure that is useful for determining confidence
bounds on estimates.'®"" Both nonparametric and parametric bootstrap procedures exist; a parametric
procedure is used here to determine tolerance bounds for data having a two-parameter gamma
distribution. Reference 10 employs the BC, parametric bootstrap. The bootstrap, and the BC,
method, in particular, have nice asymptotic properties, but in order to demonstrate the effectiveness of
this procedure for estimating percentiles of gamma data based on relatively small samples, Monte
Carlo simulations were performed. For sample sizes of 10, 30, and 100, and gamma shape
parameters of 1.5, 3, 5, and 10 (the results are independent of the scale parameter of the gamma
distribution), the coverage probabilities of the BC, tolerance bounds were estimated. Table 1
summarizes the results of the Monte Carlo simulation. The table entries are the proportion of 1000
bootstrap 0.997/0.90 tolerance intervals that covered the true 0.997 quantile of a gamma distribution
with given shape parameter and given sample size. In each case, approximately 90 percent of the
bootstrapped tolerance intervals include the true 0.997 quantile of the distribution, indicating that the
BC, tolerance bound results in accurate tolerance bounds.

Table 1. Coverage Probability of Bootstrapped 0.997/0.90 Gamma
Tolerance Intervals. Table Entries are the Proportion of 1000
Bootstrap 0.997/0.90 Tolerance Intervals that Covered the True
0.997 Quantile of a Gamma Distribution with Given Shape Para-
meter and Given Sample Size. All Entries are Near What is
Expected: 0.90.

Sample Size
10 30 100
Gamma 1.5 0.87 0.90 0.92
Shape 3.0 0.86 0.90 0.92
Parameter 5.0 0.85 0.90 0.93
10.0 0.89 0.90 0.90

Drawbacks to the parametric bootstrap procedure for calculating tolerance bounds include the
following: 1) It is computer-intensive, taking a few minutes to perform for sample sizes on the order
of 1000; and, 2) It is sensitive to the assumption of a gamma distribution. The second drawback
cannot be avoided by using a nonparametric bootstrap; it is not possible to estimate the 0.997
enclosure of a small set of data without making assumptions about the distribution. The first
drawback is less of an issue.

Applying this method to the data shown in Fig. 1, we obtain a 0.997/0.90 tolerance bound of
10,960,000 inch-pounds.
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6. Nonparametric Procedure

A nonparametric method of calculating a tolerance bound can be used when the sample size is
sufficiently large. This method relies on a standard result of probability theory that for a continuous
probability distribution, a nondecreasing function exists that, when applied to the data, transforms the
data to a normal distribution: If G is the cumulative distribution function of a continuous random
variable X, and F; is the standard normal cumulative distribution function, then f{X) has a standard
normal distribution, where f(-) = F;'[G(-)]. See Fig. 4 for a graphical explanation of this result, which
follows from the Probability Integral Transformation.'” This result is useful for estimating tolerance
bounds because if the transforming function, f, can be accurately estimated, tolerance bounds for
non-normal data can be calculated using normal tolerance bounds.

Figure 4. This plot demonstrates the normalizing transformation. F,X is the standard normal
cumulative distribution function, (Cdf), and G(X) is the Cdf of a general distribution.
The normalizing function in this case is the one that transforms, for example, -3 to
1.1 and 3 to 0.9.

To see this, suppose fis known, let X be a random variable from a continuous distribution, G, so that
f(X)=Z is a standard normal random variable. Let {x,,x,,...,x,} be a sample from G, and let T,

be the p/C tolerance bound based on {f(x,), f(x,),...,f(x,)}, using normal tolerance bound theory.
Define z, to be the p-quantile of a standard normal distribution. Then by the definition of a p/C
tolerance bound, we have

C=P(T,;>q,)
= P(f(T,)> £'(z,)

Let T, =f"(T,) and q;( = f_l(zp), and we have

17



C=P(T, >q}).

If we can show that ql’f is the p-quantile of the distribution of X; i.e.,

X

[g0dx=p

then we have demonstrated that T, = f~'(T}) is a p/C tolerance interval for X. This is easily shown as

follows:
p=P(Z< Z,,)

=P(f (D)< f(z,)
=P(X<gq,),

ie., q[)f is the p-quantile of X.

If there is sufficient data to estimate the normalizing function, £, or its inverse, f/, tolerance bounds

for non-normal data can be estimated by f™'(T,), where T, is the tolerance bound assuming a
normal distribution (see Fig. 5). The K-value for a 0.997/0.90 normal tolerance interval is 2.83 for a
sample of 1131. This corresponds to 1.05e+07 for a 0.997/0.90 tolerance bound for the gust loads
data shown in Fig. 5. This can be converted to k-value by using the sample mean and standard
deviation of the gust loads data. For a 0.997/0.90 tolerance bound, estimation of the function f in
the vicinity of 77 requires a sample of 1000 or more. For the gust loads, shown in Fig. 3, a fifth-order
polynomial approximates ' well on a normal probability plot in the vicinity of Tj.
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Normal Probability Plot for
1131 Gusts
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Figure 5. Nonparametric procedure for tolerance bounds. K-value for 0.997/0.90
normal tolerance interval is 2.83 for sample of 1131. From the figure, this
corresponds to 1.05e+07 for a 0.997/0.90 tolerance bound for the gust loads
data shown. This can be converted to k-value by using the sample mean and
standard deviation of the gust.

Applying this method to the data shown in Fig. 1, we obtain a 0.997/0.90 tolerance bound of
11,040,000 inch-pounds.
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7. Conclusions

We have presented two methods of finding tolerance bounds for gust loads analysis data. One
assumes the gusts follow a gamma distribution, and is useful for smaller sample sizes. The other does
not require this assumption, but requires considerably more data. For the data shown in Fig. 1, both
methods result in similar tolerance bounds, approximately 11,000,000 inch-pounds for each. The

statistical analysis approach presented herein was used to derive the 99.7/90 gust-induced loads in
Ref. 3.
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